Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(1): 456-467, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37638491

RESUMO

BACKGROUND: Wheat (Triticum aestivum L.) is the second most consumed food in the world. One way to meet this demand is the expansion of wheat cultivation to the Brazilian Cerrado in the southeastern region. However, one of the major limitations is that there are few studies related to wheat climate risk zoning. Thus, this study aimed to determine the agroclimatic zoning of wheat by estimating the water needs satisfaction index (ISNA) in the southeastern region of Brazil. For this purpose, a 60-year historical series of meteorological data was used to calculate the potential evapotranspiration, crop evapotranspiration, and climatological water balance values. To define the agroclimatic zones of wheat and sowing date, the ISNA method was used. The data were analyzed using descriptive statistics to determine the variations. To obtain the agroclimatic zoning of wheat, the geostatistical method of kriging interpolation was used. RESULTS: The regions with the highest rainfall are the south of Minas Gerais and the coast of São Paulo. The sowing period directly impacts the development of the crop, the available water capacity and the ISNA values indicated the spring and summer had better cultivation conditions, and the best window for wheat cultivation is concentrated in the fall due to the limitation of biotic factors. CONCLUSION: In terms of altitude (>700 m), Minas Gerais has 39.4% of the area suitable for wheat cultivation. Thus, climatic variations within and between the states of the southeastern region should be considered for the positioning of wheat cultivars in these regions to obtain the maximum yield. © 2023 Society of Chemical Industry.


Assuntos
Produtos Agrícolas , Triticum , Brasil , Estações do Ano , Água , Mudança Climática
2.
Heredity (Edinb) ; 121(1): 24-37, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29472694

RESUMO

Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance. Here, we evaluated the accuracy of genomic selection (GS) using additive (A) and additive + dominance (AD) models to predict the performance of untested maize single-cross hybrids for drought tolerance in multi-environment trials. Phenotypic data of five drought tolerance traits were measured in 308 hybrids along eight trials under water-stressed (WS) and well-watered (WW) conditions over two years and two locations in Brazil. Hybrids' genotypes were inferred based on their parents' genotypes (inbred lines) using single-nucleotide polymorphism markers obtained via genotyping-by-sequencing. GS analyses were performed using genomic best linear unbiased prediction by fitting a factor analytic (FA) multiplicative mixed model. Two cross-validation (CV) schemes were tested: CV1 and CV2. The FA framework allowed for investigating the stability of additive and dominance effects across environments, as well as the additive-by-environment and the dominance-by-environment interactions, with interesting applications for parental and hybrid selection. Results showed differences in the predictive accuracy between A and AD models, using both CV1 and CV2, for the five traits in both water conditions. For grain yield (GY) under WS and using CV1, the AD model doubled the predictive accuracy in comparison to the A model. Through CV2, GS models benefit from borrowing information of correlated trials, resulting in an increase of 40% and 9% in the predictive accuracy of GY under WS for A and AD models, respectively. These results highlight the importance of multi-environment trial analyses using GS models that incorporate additive and dominance effects for genomic predictions of GY under drought in maize single-cross hybrids.


Assuntos
Adaptação Biológica , Secas , Genoma de Planta , Genômica , Modelos Genéticos , Característica Quantitativa Herdável , Estresse Fisiológico/genética , Algoritmos , Meio Ambiente , Interação Gene-Ambiente , Marcadores Genéticos , Genômica/métodos , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Seleção Genética
3.
ScientificWorldJournal ; 2014: 540152, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009831

RESUMO

This study was carried out to obtain the estimates of genetic variance and covariance components related to intra- and interpopulation in the original populations (C0) and in the third cycle (C3) of reciprocal recurrent selection (RRS) which allows breeders to define the best breeding strategy. For that purpose, the half-sib progenies of intrapopulation (P11 and P22) and interpopulation (P12 and P21) from populations 1 and 2 derived from single-cross hybrids in the 0 and 3 cycles of the reciprocal recurrent selection program were used. The intra- and interpopulation progenies were evaluated in a 10 × 10 triple lattice design in two separate locations. The data for unhusked ear weight (ear weight without husk) and plant height were collected. All genetic variance and covariance components were estimated from the expected mean squares. The breakdown of additive variance into intrapopulation and interpopulation additive deviations (σ τ (2)) and the covariance between these and their intrapopulation additive effects (Cov Aτ) found predominance of the dominance effect for unhusked ear weight. Plant height for these components shows that the intrapopulation additive effect explains most of the variation. Estimates for intrapopulation and interpopulation additive genetic variances confirm that populations derived from single-cross hybrids have potential for recurrent selection programs.


Assuntos
Quimera/genética , Variação Genética/genética , Seleção Genética/genética , Zea mays/genética , Análise de Variância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA